As stated by the Bichteler-Dellacherie theorem, all semimartingales can be decomposed as the sum of a local martingale and an FV process. However, as the terms are only determined up to the addition of an FV local martingale, this decomposition is not unique. In the case of continuous semimartingales, we do obtain uniqueness, by requiring the terms in the decomposition to also be continuous. Furthermore, the decomposition into continuous terms is preserved by stochastic integration. Looking at non-continuous processes, there does exist a unique decomposition into local martingale and predictable FV processes, so long as we impose the slight restriction that the semimartingale is locally integrable.

In this post, I look at another decomposition which holds for all semimartingales and, moreover, is uniquely determined. This is the decomposition into continuous local martingale and *purely discontinuous* terms which, as we will see, is preserved by the stochastic integral. This is distinct from each of the decompositions mentioned above, except for the case of continuous semimartingales, in which case it coincides with the sum of continuous local martingale and FV components. Before proving the decomposition, I will start by describing the class of purely discontinuous semimartingales which, although they need not have finite variation, do have many of the properties of FV processes. In fact, they comprise precisely of the closure of the set of FV processes under the semimartingale topology. The terminology can be a bit confusing, and it should be noted that purely discontinuous processes need not actually have any discontinuities. For example, all continuous FV processes are purely discontinuous. For this reason, the term `quadratic pure jump semimartingale’ is sometimes used instead, referring to the fact that their quadratic variation is a pure jump process. Recall that quadratic variations and covariations can be written as the sum of continuous and pure jump parts,

(1) |

The statement that the quadratic variation is a pure jump process is equivalent to saying that its continuous part, , is zero. As the only difference between the generalized Ito formula for semimartingales and for FV processes is in the terms involving continuous parts of the quadratic variations and covariations, purely discontinuous semimartingales behave much like FV processes under changes of variables and integration by parts. Yet another characterisation of purely discontinuous semimartingales is as sums of purely discontinuous local martingales — which were studied in the previous post — and of FV processes.

Rather than starting by choosing one specific property to use as the definition, I prove the equivalence of various statements, any of which can be taken to define the purely discontinuous semimartingales.

Theorem 1For a semimartingaleX, the following are equivalent.

- .
- for all semimartingales
Y.- for all continuous semimartingales
Y.- for all continuous local martingales
M.- for a purely discontinuous local martingale
Mand FV processV.- there exists a sequence of FV processes such that in the semimartingale topology.